Standard -12| chapter-3| Theory of equations| youtube video class (presented by SHANKAR G)

Note: One touch the questions and to get the answers

Example 3.1

If α and β are the roots of the quadratic equation $17x^2 + 43x - 73 = 0$, construct a quadratic equation whose roots are $\alpha + 2$ and $\beta + 2$.

Example 3.2

If α and β are the roots of the quadratic equation $2x^2 - 7x + 13 = 0$, construct a quadratic equation whose roots are α^2 and β^2 .

Example 3.3

If α , β , and γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{1}{\beta \gamma}$ in terms of the coefficients.

Example 3.4

Find the sum of the squares of the roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$, $a \ne 0$

Example 3.5

Find the condition that the roots of cubic equation $x^3 + ax^2 + bx + c = 0$ are in the ratio p:q:r.

Example 3.6

Form the equation whose roots are the squares of the roots of the cubic equation $x^3 + ax^2 + bx + c = 0$.

Example 3.7

If p is real, discuss the nature of the roots of the equation $4x^2 + 4px + p + 2 = 0$, in terms of p.

EXERCISE 3.1

- 1. If the sides of a cubic box are increased by 1, 2, 3 units respectively to form a cuboid, then the volume is increased by 52 cubic units. Find the volume of the cuboid.
 - 2. Construct a cubic equation with roots

(ii)
$$1, 1, \text{ and } -2$$

(i) 1, 2, and 3 (ii) 1, 1, and
$$-2$$
 (iii) 2, $\frac{1}{2}$ and 1.

3. If α , β and γ are the roots of the cubic equation $x^3 + 2x^2 + 3x + 4 = 0$, form a cubic equation whose roots are

(i)
$$2\alpha$$
, 2β , 2γ (ii) $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$ (iii) $-\alpha$, $-\beta$, $-\gamma$

(iii)
$$-\alpha$$
, $-\beta$, $-\gamma$

- 4. Solve the equation $3x^3 16x^2 + 23x 6 = 0$ if the product of two roots is 1.
- 5. Find the sum of squares of roots of the equation $2x^4 8x^3 + 6x^2 3 = 0$.
- 6. Solve the equation $x^3 9x^2 + 14x + 24 = 0$ if it is given that two of its roots are in the ratio 3:2.
- 7. If α, β , and γ are the roots of the polynomial equation $ax^3 + bx^2 + cx + d = 0$, find the value of $\sum \frac{\alpha}{\beta \gamma}$ in terms of the coefficients.
- 8. If α, β, γ , and δ are the roots of the polynomial equation $2x^4 + 5x^3 7x^2 + 8 = 0$, find a quadratic equation with integer coefficients whose roots are $\alpha + \beta + \gamma + \delta$ and $\alpha\beta\gamma\delta$.
- 9. If p and q are the roots of the equation $lx^2 + nx + n = 0$, show that $\sqrt{\frac{p}{a}} + \sqrt{\frac{q}{n}} + \sqrt{\frac{n}{l}} = 0$.
- 10. If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root, show that it must be equal to $\frac{pq'-p'q}{q-q'}$ or $\frac{q-q'}{p'-p}$.

Example 3.8

Find the monic polynomial equation of minimum degree with real coefficients having $2-\sqrt{3}i$ as a root.

Example 3.9

Find a polynomial equation of minimum degree with rational coefficients, having $2-\sqrt{3}$ as a root.

Example 3.10

Form a polynomial equation with integer coefficients with $\sqrt{\frac{\sqrt{2}}{\sqrt{3}}}$ as a root.

Example 3.11

Show that the equation $2x^2 - 6x + 7 = 0$ cannot be satisfied by any real values of x.

Example 3.12

If
$$x^2 + 2(k+2)x + 9k = 0$$
 has equal roots, find k.

Example 3.13

Show that, if p,q,r are rational, the roots of the equation $x^2 - 2px + p^2 - q^2 + 2qr - r^2 = 0$ are rational.

Example 3.14

Prove that a line cannot intersect a circle at more than two points.

EXERCISE 3.2

- 1. If k is real, discuss the nature of the roots of the polynomial equation $2x^2 + kx + k = 0$, in terms of k.
- 2. Find a polynomial equation of minimum degree with rational coefficients, having $2+\sqrt{3}i$ as a root.
- 4. Find a polynomial equation of minimum degree with rational coefficients, having $\sqrt{5} \sqrt{3}$ as a root.
- 5. Prove that a straight line and parabola cannot intersect at more than two points.

Example 3.15

If
$$2+i$$
 and $3-\sqrt{2}$ are roots of the equation
$$x^6 - 13x^5 + 62x^4 - 126x^3 + 65x^2 + 127x - 140 = 0,$$
 find all roots.

Example 3.16

Solve the equation $x^4 - 9x^2 + 20 = 0$.

Example 3.17

Solve the equation $x^3 - 3x^2 - 33x + 35 = 0$.

Example 3.18

Solve the equation $2x^3 + 11x^2 - 9x - 18 = 0$.

Example 3.19

Obtain the condition that the roots of $x^3 + px^2 + qx + r = 0$ are in A.P.

Example 3.20

Find the condition that the roots of $ax^3 + bx^2 + cx + d = 0$ are in geometric progression. Assume $a, b, c, d \neq 0$

EXERCISE 3.3

- 1. Solve the cubic equation: $2x^3 x^2 18x + 9 = 0$ if sum of two of its roots vanishes.
- 2. Solve the equation $9x^3 36x^2 + 44x 16 = 0$ if the roots form an arithmetic progression.
- 3. Solve the equation $3x^3 26x^2 + 52x 24 = 0$ if its roots form a geometric progression.
- 4. Determine k and solve the equation $2x^3 6x^2 + 3x + k = 0$ if one of its roots is twice the sum of the other two roots.
- 5. Find all zeros of the polynomial $x^6 3x^5 5x^4 + 22x^3 39x^2 39x + 135$, if it is known that 1+2i and $\sqrt{3}$ are two of its zeros.

Answer: Refer example 3.15

6. Solve the cubic equations: (i) $2x^3 - 9x^2 + 10x = 3$, (ii) $8x^3 - 2x^2 - 7x + 3 = 0$.

Answer: Refer example 3.17 & 3.18

7. Solve the equation : $x^4 - 14x^2 + 45 = 0$.

Answer: Refer example 3.16

Example 3.23

Solve the equation

$$(x-2)(x-7)(x-3)(x+2)+19 = 0$$
.

EXERCISE 3.4

- 1. Solve: (i) (x-5)(x-7)(x+6)(x+4) = 504 (ii) (x-4)(x-7)(x-2)(x+1) = 16
- 2. Solve: (2x-1)(x+3)(x-2)(2x+3)+20=0

Answer: Refer example 3.23